The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 X 1 X 1 X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X 2 2 2 X X X X 2 2 2 X
0 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 0 2X 0 2X 0 2X 0 2X 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 2X 2X 2X 2X 0 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0
0 0 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 0 0 0 2X 0 2X 0 2X 0 2X 2X 2X 2X 2X 2X 0 2X 2X 2X 2X 2X 2X 2X 0 2X 2X 0 2X 2X 2X 0 0 2X 2X 2X 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 0 0 0 0 0 0
0 0 0 2X 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 2X 2X 0 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 2X 0 0 2X 2X 2X 0 0 0 2X 0 2X 2X 0 2X 2X 0 2X 2X 2X 2X 0 2X 0 0 2X 2X 0 0 0 2X 2X 0 2X 0 2X 0 0 0 2X 2X 0 0 0 2X 2X 0 0 0 0
0 0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 0 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 0 2X 2X 2X 2X 2X 0 2X 2X 0 2X 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 2X 2X 0 2X 0 2X 0 2X 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 0 2X 2X 0 2X 0
0 0 0 0 0 2X 0 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 2X 0 0 2X 0 0 0 2X 2X 0 2X 2X 0 2X 0 2X 2X 2X 0 2X 2X 2X 2X 0 0 2X 2X 2X 0 2X 0 0 0 0 0 2X 0 0 2X 0 2X 0 2X 2X 0 2X 0 0 2X 2X 0 0 0 0 0 0 2X 0 2X 0 0
0 0 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 2X 0 0 2X 0 2X 2X 0 2X 2X 2X 2X 0 0 0 0 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 0 0 2X 2X 2X 0 2X 2X 0 0 2X 0 0 2X 2X 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 0 2X 0 0 0 2X 2X 0 0 2X 0 2X 0 2X 2X 2X 2X 2X 0 0 2X 0 0 0
generates a code of length 94 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 88.
Homogenous weight enumerator: w(x)=1x^0+51x^88+42x^90+113x^92+622x^94+106x^96+38x^98+30x^100+2x^102+17x^104+1x^108+1x^144
The gray image is a code over GF(2) with n=752, k=10 and d=352.
This code was found by Heurico 1.16 in 1.33 seconds.